うべの時空代数

気になる点がありましたらコメントくださいm(_ _)m

幾何代数によるYang-Mills項

\def\ou#1#2#3{\overset{#2}{\underset{#3}{#1}}}\def\os#1#2{\overset{#2}{#1}}\def\diff{\mathrm{d}}\def\biff{\mathrm{b}}\def\D{\mathrm{D}}\def\p{\mathrm{p}}\def\pu#1{\underset{#1}{\mathrm{p}}}\def\p{\mathrm{p}}\def\qu#1{\underset{#1}{\mathrm{q}}}\def\G#1#2{\overset{#1}{\underset{#2}{\Gamma}}}\def\abs#1{|#1|}
Lie代数Aと幾何代数Bの積をとりあえず
A\lhd B=B\rhd A
と定義する.これはKronecker積とみることができる.とりあえず平坦なMinkowski空間を考え,その幾何代数の基底を\ou{\gamma}{}{\mu}とし,ゲージ場に関するLie代数の生成子をT_aとする.ここでゲージ場を
A:=\ou{A}{}{\mu}\lhd\ou{\gamma}{\mu}{}=\left\{\ou{A}{}{\mu}{}_aT_a\right\}\lhd\ou{\gamma}{\mu}{}
と定義し,非可換ゲージ理論におけるDirac作用素
\mathcal{D}:=\ou{\mathcal{D}}{}{\mu}\lhd\ou{\gamma}{\mu}{}=\left\{\pu{\mu}I_N+ig\ou{A}{}{\mu}\right\}\lhd\ou{\gamma}{\mu}{}=I_N\lhd\D+igA
と定義する.I_NはLie代数のサイズの単位行列であり,\Dは通常のDirac作用素である.
A\mathcal{D}は重力を無視して幾何代数の基底の微分を0とするとKronecker積における混合積性質と同様に計算できて
A\mathcal{D}=A\left\{\pu{\nu}I_N\lhd\ou{\gamma}{\nu}{}\right\}+igA^2\\
=\left\{\ou{A}{}{\mu}\lhd\ou{\gamma}{\mu}{}\right\}\left\{\pu{\nu}I_N\lhd\ou{\gamma}{\nu}{}\right\}+ig\left\{\ou{A}{}{\mu}\lhd\ou{\gamma}{\mu}{}\right\}\left\{\ou{A}{}{\nu}\lhd\ou{\gamma}{\nu}{}\right\}\\
=\left\{\ou{A}{}{\mu}\pu{\nu}\right\}\lhd\left\{\ou{\gamma}{\mu}{}\ou{\gamma}{\nu}{}\right\}+ig\left\{\ou{A}{}{\mu}\ou{A}{}{\nu}\right\}\lhd\left\{\ou{\gamma}{\mu}{}\ou{\gamma}{\nu}{}\right\}\\
=\left\{\ou{A}{}{\mu}\pu{\nu}+ig\ou{A}{}{\mu}\ou{A}{}{\nu}\right\}\lhd\left\{\ou{\gamma}{\mu}{}\vee\ou{\gamma}{\nu}{}+\ou{\gamma}{\mu}{}\wedge\ou{\gamma}{\nu}{}\right\}\\
=\left\{\ou{A}{\mu}{}\pu{\mu}+ig\ou{A}{}{\mu}\ou{A}{\mu}{}\right\}+\left\{\ou{A}{}{\mu}\pu{\nu}+ig\ou{A}{}{\mu}\ou{A}{}{\nu}\right\}\lhd\left\{\ou{\gamma}{\mu}{}\wedge\ou{\gamma}{\nu}{}\right\}
となる.行列積ABの定義できる行列A,\ Bと幾何代数a,\ bに対して
\left\{A\lhd a\right\}\wedge\left\{B\lhd b\right\}:=\left\{AB\right\}\lhd\left\{a\wedge b\right\}\\
\left\{A\lhd a\right\}\vee\left\{B\lhd b\right\}:=\left\{A\lhd a\right\}\left\{B\lhd b\right\}-\left\{A\lhd a\right\}\wedge\left\{B\lhd b\right\}=\left\{AB\right\}\lhd\left\{a\vee b\right\}
wedge積とvee積を拡張する.
F:=-A\wedge\mathcal{D}=-A\wedge\left\{\pu{\nu}I_N\lhd\ou{\gamma}{\nu}{}\right\}-igA\wedge A\\
=-\left\{\ou{A}{}{\mu}\lhd\ou{\gamma}{\mu}{}\right\}\wedge\left\{\pu{\nu}I_N\lhd\ou{\gamma}{\nu}{}\right\}-ig\left\{\ou{A}{}{\mu}\lhd\ou{\gamma}{\mu}{}\right\}\wedge\left\{\ou{A}{}{\nu}\lhd\ou{\gamma}{\nu}{}\right\}\\
=-\left\{\ou{A}{}{\mu}\pu{\nu}\right\}\lhd\left\{\ou{\gamma}{\mu}{}\wedge\ou{\gamma}{\nu}{}\right\}-ig\left\{\ou{A}{}{\mu}\ou{A}{}{\nu}\right\}\lhd\left\{\ou{\gamma}{\mu}{}\wedge\ou{\gamma}{\nu}{}\right\}\\
=-\left\{\ou{A}{}{\mu}\pu{\nu}+ig\ou{A}{}{\mu}\ou{A}{}{\nu}\right\}\lhd\left\{\ou{\gamma}{\mu}{}\wedge\ou{\gamma}{\nu}{}\right\}
成分を計算する.添字の丸括弧は総和を取らないことを意味する.
-\left\{\ou{A}{}{(\mu)}\pu{(\nu)}+ig\ou{A}{}{(\mu)}\ou{A}{}{(\nu)}\right\}\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}-\left\{\ou{A}{}{(\nu)}\pu{(\mu)}+ig\ou{A}{}{(\nu)}\ou{A}{}{(\mu)}\right\}\lhd\left\{\ou{\gamma}{(\nu)}{}\wedge\ou{\gamma}{(\mu)}{}\right\}\\
=-\left\{\ou{A}{}{(\mu)}\pu{(\nu)}+ig\ou{A}{}{(\mu)}\ou{A}{}{(\nu)}\right\}\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}+\left\{\ou{A}{}{(\nu)}\pu{(\mu)}+ig\ou{A}{}{(\nu)}\ou{A}{}{(\mu)}\right\}\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}\\
=\left\{\ou{A}{}{(\nu)}\pu{(\mu)}-\ou{A}{}{(\mu)}\pu{(\nu)}-ig\ou{A}{}{(\mu)}\ou{A}{}{(\nu)}+ig\ou{A}{}{(\nu)}\ou{A}{}{(\mu)}\right\}\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}\\
=\left\{\ou{A}{}{(\nu)}\pu{(\mu)}-\ou{A}{}{(\mu)}\pu{(\nu)}+ig\left\{-\ou{A}{}{(\mu)}{}_a\ou{A}{}{(\nu)}{}_bT_aT_b+\ou{A}{}{(\nu)}{}_b\ou{A}{}{(\mu)}{}_aT_bT_a\right\}\right\}\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}\\
=\left\{\ou{A}{}{(\nu)}\pu{(\mu)}-\ou{A}{}{(\mu)}\pu{(\nu)}-ig\ou{A}{}{(\mu)}{}_a\ou{A}{}{(\nu)}{}_b\left\{T_aT_b-T_bT_a\right\}\right\}\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}\\
=\left\{\ou{A}{}{(\nu)}\pu{(\mu)}-\ou{A}{}{(\mu)}\pu{(\nu)}-ig\ou{A}{}{(\mu)}{}_a\ou{A}{}{(\nu)}{}_bif_{abc}T_c\right\}\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}\\
=\left\{\ou{A}{}{(\nu)}{}_c\pu{(\mu)}-\ou{A}{}{(\mu)}{}_c\pu{(\nu)}+gf_{abc}\ou{A}{}{(\mu)}{}_a\ou{A}{}{(\nu)}{}_b\right\}T_c\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}\\
=\ou{F}{}{(\mu)(\nu)}{}_cT_c\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}=\ou{F}{}{(\mu)(\nu)}\lhd\left\{\ou{\gamma}{(\mu)}{}\wedge\ou{\gamma}{(\nu)}{}\right\}
つまり
F=-A\wedge\mathcal{D}=\frac{1}{2}\ou{F}{}{\mu\nu}{}_aT_a\lhd\left\{\ou{\gamma}{\mu}{}\wedge\ou{\gamma}{\nu}{}\right\}=\frac{1}{2}\ou{F}{}{\mu\nu}\lhd\left\{\ou{\gamma}{\mu}{}\wedge\ou{\gamma}{\nu}{}\right\}
が成り立つ.また自身とのvee積は
F\vee F=\frac{1}{4}\ou{F}{}{\mu\nu}\ou{F}{}{\rho\sigma}\lhd\left\{\left\{\ou{\gamma}{\mu}{}\wedge\ou{\gamma}{\nu}{}\right\}\vee\left\{\ou{\gamma}{\rho}{}\wedge\ou{\gamma}{\sigma}{}\right\}\right\}\\
=\frac{1}{4}\ou{F}{}{\mu\nu}\ou{F}{}{\rho\sigma}\lhd\left\{\left\{\ou{\gamma}{\nu}{}\vee\ou{\gamma}{\rho}{}\right\}\left\{\ou{\gamma}{\mu}{}\vee\ou{\gamma}{\sigma}{}\right\}-\left\{\ou{\gamma}{\mu}{}\vee\ou{\gamma}{\rho}{}\right\}\left\{\ou{\gamma}{\nu}{}\vee\ou{\gamma}{\sigma}{}\right\}\right\}\\
=-\frac{1}{2}\ou{F}{}{\mu\nu}\ou{F}{\mu\nu}{}
であるためYang-Mills項は
\mathcal{L}_{\mathrm{YM}}=\mathrm{Tr}(F\vee F)
となる.これは一般の幾何代数でも成り立つ.