うべの時空代数

気になる点がありましたらコメントくださいm(_ _)m

共変微分の幾何代数化

曲線座標系(\overset{\iota}{x})におけるベクトル場A:=\overset{\mu}{A}\underset{\mu}{\gamma}に,(\overset{\iota}{x})における1次偏微分作用素\mathrm{D}:=\underset{\mu}{\mathrm{p}}\overset{\mu}{\gamma}を作用させる.\underset{\mu}{\mathrm{p}}はすぐ左にある関数値の関数に作用する\overset{\mu}{x}による偏微分であり,\underset{\mu}{\gamma}(\overset{\iota}{x})における基底ベクトルである.直線座標系(\overset{\iota}{X})を用意しその1次基底を\overset{\iota}{\sigma}とするならば
\underset{\mu}{\gamma}=\{\overset{\nu}{X}\underset{\nu}{\sigma}\}\underset{\mu}{\mathrm{p}},
である.ただし接続がクリストッフェル記号である条件
\underset{\mu}{\gamma}\underset{\nu}{\mathrm{p}}=\underset{\nu}{\gamma}\underset{\mu}{\mathrm{p}},
が成り立つものとする.ここで用いる定義や公式を示しておく.
\underset{\mu}{\gamma}\underset{\nu}{\mathrm{p}}=\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\underset{\alpha}{\gamma},
\underset{\mu}{\gamma}\underset{\nu}{\gamma}=\underset{\mu}{\gamma}\vee\underset{\nu}{\gamma}+\underset{\mu}{\gamma}\wedge\underset{\nu}{\gamma},
\underset{\mu\nu}{g}=\underset{\mu}{\gamma}\vee\underset{\nu}{\gamma},
\underset{\mu\nu}{g}\underset{\rho}{\mathrm{p}}=\overset{\alpha}{\underset{\mu\rho}{\Gamma}}\underset{\alpha\nu}{g}+\overset{\alpha}{\underset{\nu\rho}{\Gamma}}\underset{\alpha\mu}{g},
\underset{\mu\alpha}{g}\overset{\nu\alpha}{g}=\underset{\mu}{\gamma}\vee\overset{\nu}{\gamma}=\overset{\nu}{\underset{\mu}{\delta}},
\overset{\mu}{\gamma}=\overset{\mu\nu}{g}\underset{\nu}{\gamma},
\overset{\mu}{\gamma}\underset{\nu}{\mathrm{p}}=-\overset{\mu}{\underset{\alpha\nu}{\Gamma}}\overset{\alpha}{\gamma},
\overset{\mu\nu}{g}\underset{\rho}{\mathrm{p}}=-\overset{\nu}{\underset{\alpha\rho}{\Gamma}}\overset{\mu\alpha}{g}-\overset{\mu}{\underset{\alpha\rho}{\Gamma}}\overset{\alpha\nu}{g}.
また1次同士に限り
a\vee b=a\odot b=\frac{ab+ba}{2},\\a\wedge b=a\otimes b=\frac{ab-ba}{2},
が成り立つ.
A\mathrm{D}=\{\overset{\mu}{A}\underset{\mu}{\gamma}\}\underset{\nu}{\mathrm{p}}\overset{\nu}{\gamma}\\=\{\overset{\mu}{A}\underset{\nu}{\mathrm{p}}\underset{\mu}{\gamma}+\underset{\mu}{\gamma}\underset{\nu}{\mathrm{p}}\overset{\mu}{A}\}\overset{\nu}{\gamma}\\=\{\overset{\mu}{A}\underset{\nu}{\mathrm{p}}\underset{\mu}{\gamma}+\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\underset{\alpha}{\gamma}\overset{\mu}{A}\}\overset{\nu}{\gamma}\\=\{\overset{\mu}{A}\underset{\nu}{\mathrm{p}}\underset{\mu}{\gamma}+\overset{\mu}{\underset{\alpha\nu}{\Gamma}}\underset{\mu}{\gamma}\overset{\alpha}{A}\}\overset{\nu}{\gamma}\\=\{\overset{\mu}{A}\underset{\nu}{\mathrm{p}}+\overset{\mu}{\underset{\alpha\nu}{\Gamma}}\overset{\alpha}{A}\}\underset{\mu}{\gamma}\overset{\nu}{\gamma}\\=\{\overset{\mu}{A}\underset{\nu}{\mathrm{p}}+\overset{\mu}{\underset{\alpha\nu}{\Gamma}}\overset{\alpha}{A}\}\{\underset{\mu}{\gamma}\vee\overset{\nu}{\gamma}+\underset{\mu}{\gamma}\wedge\overset{\nu}{\gamma}\}\\=\{\overset{\mu}{A}\underset{\nu}{\mathrm{p}}+\overset{\mu}{\underset{\alpha\nu}{\Gamma}}\overset{\alpha}{A}\}\{\overset{\nu}{\underset{\mu}{\delta}}+\underset{\mu}{\gamma}\wedge\overset{\nu}{\gamma}\}\\=\overset{\mu}{A}\underset{\mu}{\mathrm{p}}+\overset{\mu}{\underset{\alpha\mu}{\Gamma}}\overset{\alpha}{A}+\{\overset{\mu}{A}\underset{\nu}{\mathrm{p}}+\overset{\mu}{\underset{\alpha\nu}{\Gamma}}\overset{\alpha}{A}\}\underset{\mu}{\gamma}\wedge\overset{\nu}{\gamma}
0次の部分は曲線座標系における発散であり
A\vee\mathrm{D},
と書ける.2次の部分は回転なのだがこのままではクリストッフェル記号が残りわかりにくい.そこで最初に戻り次のように計算を進める.
A\mathrm{D}=\{\underset{\mu}{A}\overset{\mu}{\gamma}\}\underset{\nu}{\mathrm{p}}\overset{\nu}{\gamma}\\=\{\underset{\mu}{A}\underset{\nu}{\mathrm{p}}\overset{\mu}{\gamma}+\overset{\mu}{\gamma}\underset{\nu}{\mathrm{p}}\underset{\mu}{A}\}\overset{\nu}{\gamma}\\=\{\underset{\mu}{A}\underset{\nu}{\mathrm{p}}\overset{\mu}{\gamma}-\overset{\mu}{\underset{\alpha\nu}{\Gamma}}\overset{\alpha}{\gamma}\underset{\mu}{A}\}\overset{\nu}{\gamma}\\=\{\underset{\mu}{A}\underset{\nu}{\mathrm{p}}\overset{\mu}{\gamma}-\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\overset{\mu}{\gamma}\underset{\alpha}{A}\}\overset{\nu}{\gamma}\\=\{\underset{\mu}{A}\underset{\nu}{\mathrm{p}}-\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\underset{\alpha}{A}\}\overset{\mu}{\gamma}\overset{\nu}{\gamma}\\=\{\underset{\mu}{A}\underset{\nu}{\mathrm{p}}-\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\underset{\alpha}{A}\}\{\overset{\mu}{\gamma}\vee\overset{\nu}{\gamma}+\overset{\mu}{\gamma}\wedge\overset{\nu}{\gamma}\}\\=\{\underset{\mu}{A}\underset{\nu}{\mathrm{p}}-\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\underset{\alpha}{A}\}\{\overset{\mu\nu}{g}+\overset{\mu}{\gamma}\wedge\overset{\nu}{\gamma}\}\\=\{\underset{\mu}{A}\underset{\nu}{\mathrm{p}}-\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\underset{\alpha}{A}\}\overset{\mu\nu}{g}+\{\underset{\mu}{A}\underset{\nu}{\mathrm{p}}-\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\underset{\alpha}{A}\}\overset{\mu}{\gamma}\wedge\overset{\nu}{\gamma}
0次の部分は発散なのだが計量が残りわかりにくい.2次の部分は回転であるがまだ簡単にできる.\overset{\mu}{\gamma}\wedge\overset{\nu}{\gamma}|\mu\neq\nuの基底の成分は
\underset{\mu}{A}\underset{\nu}{\mathrm{p}}-\overset{\alpha}{\underset{\mu\nu}{\Gamma}}\underset{\alpha}{A}-\underset{\nu}{A}\underset{\mu}{\mathrm{p}}+\overset{\alpha}{\underset{\nu\mu}{\Gamma}}\underset{\alpha}{A}\\=\underset{\mu}{A}\underset{\nu}{\mathrm{p}}-\underset{\nu}{A}\underset{\mu}{\mathrm{p}}.
ここで注意すると\overset{\nu}{\gamma}\wedge\overset{\mu}{\gamma}=-\overset{\mu}{\gamma}\wedge\overset{\nu}{\gamma}であるため負で添え字の入れ替わたものも考慮しなければならない.クリストッフェル記号が添字の対称性により消えて直線座標系同様の式になったことに注目してほしい.回転は発散同様
A\wedge\mathrm{D},
と書ける.よって曲線座標系においてベクトル場に1次偏微分作用素を作用させると
A\mathrm{D}=A\vee\mathrm{D}+A\wedge\mathrm{D}=\overset{\mu}{A}\underset{\mu}{\mathrm{p}}+\overset{\mu}{\underset{\alpha\mu}{\Gamma}}\overset{\alpha}{A}+\underset{\mu}{A}\underset{\nu}{\mathrm{p}}\overset{\mu}{\gamma}\wedge\overset{\nu}{\gamma},
となる.